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Most living things and many nonliving things deform as they move, requiring observers to separate object motions from
object deformations. When the object is partially occluded, the task becomes more difficult because it is not possible to use
two-dimensional (2-D) contour correlations (Cohen, Jain, & Zaidi, 2010). That leaves dynamic depth matching across the
unoccluded views as the main possibility. We examined the role of stereo cues in extracting motion of partially occluded and
deforming three-dimensional (3-D) objects, simulated by disk-shaped random-dot stereograms set at randomly assigned
depths and placed uniformly around a circle. The stereo-disparities of the disks were temporally oscillated to simulate
clockwise or counterclockwise rotation of the global shape. To dynamically deform the global shape, random disparity
perturbation was added to each disk’s depth on each stimulus frame. At low perturbation, observers reported rotation
directions consistent with the global shape, even against local motion cues, but performance deteriorated at high
perturbation. Using 3-D global shape correlations, we formulated an optimal Bayesian discriminator for rotation direction.
Based on rotation discrimination thresholds, human observers were 75% as efficient as the optimal model, demonstrating
that global shapes derived from stereo cues facilitate inferences of object motions. To complement reports of stereo and
motion integration in extrastriate cortex, our results suggest the possibilities that disparity selectivity and feature tracking are
linked, or that global motion selective neurons can be driven purely from disparity cues.
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Introduction

The world is populated with objects that deform as
they move. Observers thus have to parse object motions
from shape changes. When viewing a tiger moving
behind bushes, an observer can only see disparate
motion through openings between bushes. The observ-
er has to extract the tiger’s movement using these
disparate motion signals, while disregarding the shape
deformations caused by these movements (some of
which cause local motions in the opposite direction). A
number of processes have been identified in the
computational and psychophysical literature that could
help in these tasks. If a moving contour is visible,
inferences can be made about shape (Cipolla & Giblin,
2000) and motion (Caplovitz & Tse, 2007a, 2007b;
Rokers, Yuille, & Liu, 2006). If the object is partially
occluded so that the contour is sparsely sampled, shape
properties can help to infer motion direction for rigid
(Lorenceau & Alais, 2001; Shiffrar & Pavel, 1991) and
nonrigid (Cohen et al., 2010) objects, and motion can
reveal shapes through pattern integration (Nishida,
2004). If the contour is completely occluded, visible
patterns of velocities can be used to perceive three-

dimensional (3-D) shape for rigid (Koenderink & van
Doorn, 1975, 1991) and nonrigid (Akhter, Sheikh,
Khan, & Kanade, 2008; Bregler, Hertzmann, &
Biermann, 2000; Jain & Zaidi, 2011) objects. In
addition, stereo disparities can support perception of
3-D shape (Tsai & Victor, 2003) and tracking the
direction of moving features (Ito, 1997; Lu & Sperling,
1995, 2001). In this study, we go beyond these results to
investigate whether dynamic stereo cues can help to
infer object motion, and whether that relies on inferring
3-D shape.

Figure 1 shows sample frames from the stimuli used
in the experiments (to be viewed using red-green
anaglyphs). A set of disks spaced uniformly around a
circle is varied in depth on each frame to create a
sampled 3-D shape. The underlying shape was rotated
from frame to frame resulting in depth variations of the
disks and thus simulating a transverse wave, i.e., with
wave motion orthogonal to element motion. There are
thus three types of motion present within the stimulus,
(a) z motion: the apparent local motion in depth at each
disk location caused by local disparity changes, (b)
local-xy motion: the local clockwise/counterclockwise
apparent motion between neighboring disk locations,
and (c) global-xy rotation: the global clockwise/
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counterclockwise rotation of the underlying shape
discretely sampled at equal intervals by the disks.
However, when fixating at the center of Movies 1, 2, 4,
and 5 through red-green anaglyphs, the dominant
percept is that of a shape rotating clockwise. What are
the cues that enable domination of global-xy motion?
Viewed monocularly, each image in the movie is
homogeneous with no shape cues and no correlations
between successive frames, eliminating any luminance-
based or contrast-based motion-energy cues. Therefore,
dynamic disparity shifts are the sole cue used to infer
the global motion.

Previous studies have shown than humans can
extract motion of stereo-defined rigid shapes, and
researchers have argued for both a dedicated stereo-
motion sensor (Patterson, 1999), as well as more
general salient-feature based motion mechanisms (Lu
& Sperling, 2002). It has also been shown that
perceived apparent motion direction in 3-D space is
affected by stereo-defined depth, albeit to a much lesser
degree than spatial location in the image plane (Green
& Odom, 1986; Prins & Juola, 2001). Previous studies
that examined interactions of local motion with stereo-
motion used luminance-defined local motions and
showed that luminance-defined local motions interfere

Figure 1. (A) Schematic of a sample frame of the movies used in Experiment 1. Each disk is a random-dot stereogram with the indicated

stereo-disparity in arc min. (B) Screen shots of two frames of a movie as red-green stereograms.

Movie 1. An example of the stimuli used in Experiment 1 under

no-noise condition and fast presentation rate.

Movie 2. An example of the stimuli used in Experiment 1 under

medium-noise condition and fast presentation rate.
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with and even override the perceived direction of
stereo-motion (Chang, 1990; Ito, 1997). Our study is
different in both design and intent. First, our stimuli
were devoid of any luminance or texture-based motion
information, and second, the purpose of the study was
to examine how local stereo-motions are integrated into

a coherent percept of a nonrigid object in motion.
Further, we used variants of these stimuli to measure
human efficiency in using stereo cues for global motion,
as compared to an optimal statistical model.

There is evidence for some separation of form and
motion processing in the ventral and the dorsal cortical
streams, respectively (Ungerleider, Mishkin, Ingle, &
Goodale, 1982), but the phenomena discussed above
require neural interactions between form and motion
mechanisms, which are being identified gradually
(Kourtzi, Krekelberg, & van Wezel, 2008; Van Essen
& Gallant, 1994). As for stereo cues, some neurons in
area MT (DeAngelis, Cumming, & Newsome, 1998)
and MST (Roy, Komatsu, & Wurtz, 1992) are jointly
tuned to disparity and motion direction, and dorsal
area V3B/KO is a possible site for integration of stereo
and motion signals (Ban, Preston, Meeson, & Welch-
man, 2012), but the neural substrates of combining
local stereo contributions into global object motions
have not been investigated. The methods and results of
this study could provide a framework for such
investigations.

General methods

Apparatus

Stereo movies were displayed on a Planar SD2620W
Stereo/3D display (http://www.planar3d.com/

Movie 3. An example of the stimuli used in Experiment 1 under

large-noise condition and fast presentation rate.

Movie 4. An example of the stimuli used in Experiment 2 under

no-noise condition and fast presentation rate.

Movie 5. An example of the stimuli used in Experiment 2 under

medium-noise condition and fast presentation rate.
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3d-products/sd2620w/images/SD2620W-351.jpg) con-
sisting of two LCD monitors placed orthogonal to each
other, with a beam-splitter to combine the images (Figure
2). In LCDs, the liquid crystal material modulates plane-
polarized light. The two LCDs in the Planar set-up are
manufactured so that the plane of polarization from one
monitor is perpendicular to the polarization plane in the
light path of the other monitor. When stereo pair images
from the two monitors are viewed through crossed-
polarizing glasses, the observer sees only one monitor
with each eye, resulting in a single, fused stereoscopic
image. The resolution for each eye was 1920 · 1200
pixels with a refresh rate of 60 Hz. A chin-rest stabilized
head position at a distance of 1.0 m. The experiments
were conducted in a dark room.

Stimuli

The stimuli consisted of 12 random-dot stereogram
disks (Julesz, 1971) placed uniformly around a circle
2.6 deg of visual angle (dva). Thus, the radii joining
the center of the disks to the center of the circle
divided the circle into 12 equal angles called the
interspoke angle. Each disk was 0.95 dva in size,
consisting of 50 dots and was refreshed independently
on every stimulus frame. The disks were embedded in
noise dots at zero disparity to eliminate any monoc-
ular cues to motion direction. We varied the depths of
the disks to create 3-D shapes by assigning crossed

stereo-disparities drawn independently from a Gauss-
ian distribution with a mean of either 3.4 or 6.8 arc
min (shape amplitude). During a trial, the shape was
rotated around the depth axis resulting in depth
oscillations of the disks that either maintained their
location in the image plane (Experiment 1) or moved
in the opposite direction to the shape rotation
(Experiment 2). The 3-D shape was randomly
deformed on each frame by adding disparity pertur-
bation independently to each disk (perturbation
amplitude), chosen from a Gaussian distribution with
mean of 0, 0.9, 1.7, 3.4, 6.8, or 13.6 arc min. There
were 12 images per movie presented at a rate of either
2.5 or 5 Hz (chosen randomly), resulting in a rotation
speed of 758/s or 1508/s and stimulus duration of 4.8
or 2.4 s. A circular frame 3.8 dva in radius was
presented around the stimulus at the screen depth to
aid binocular fusion. A fixation cross (0.11 · 0.11
dva) was presented for 0.5 s at the beginning of each
trial followed by stimulus presentation. The first
image was presented for 1s to aid fusion. Observers
reported the perceived direction of global-xy rotation
by pressing a key. Both experiments consisted of 40
repetitions for each condition, spread over 20 blocks
of 48 trials. Stimuli were generated using the
Psychtoolbox (Brainard, 1997; Kleiner, Brainard, &
Pelli, 2007; Pelli, 1997) for MATLAB (The Math-
works, Natick, MA).

Experiment 1: Disparity-defined motion

In this experiment, the shape was rotated by the
interspoke angle on each image frame. Thus, the disks
did not move in the image plane, but appeared to
oscillate back and forth in depth in a manner consistent
with clockwise or counterclockwise rotation of a
deforming shape (Figure 3 and Movies 1 through 3).
To rule out the possibility of observers using any
monocular cues to perform the task, we conducted a
control experiment where stimuli were presented to
either right or left eye randomly.

Experiment 2: Global versus local motion

To oppose stereo-defined shapes versus local mo-
tions as the driving factor in the observers’ responses,
the shape was rotated by 80% of the interspoke angle,
thus creating shortest/slowest local-xy motion (Weiss,
Simoncelli, & Adelson, 2002) in the direction opposite
to the global-xy shape motion (Figure 4 and Movies 4
through 6). To ascertain the role of this local-xy
motion, we conducted a control experiment where we
set the shape and perturbation amplitudes to zero and
each disk was assigned a uniform cross-disparity value

Figure 2. Stereo-display system using two monitors and a beam

splitter (Planar Inc., SD2620W).
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of 6.8 arc min. Observers’ task was the same, 2-
alternative-forced-choice (2-AFC) direction discrimina-
tion.

Observers

Nine uninformed observers (eight females, one male)
and one of the authors (AJ) completed all the
conditions in the two experiments. Observers provided
written consent prior to their participation and were
compensated for their time. All experiments were
conducted in compliance with the protocol approved
by the IRB at SUNY College of Optometry and the
Declaration of Helsinki.

Results

Experiment 1: Disparity-defined motion

Figures 5A and 5B show mean performance for 10
observers as a function of perturbation amplitude for
the two shape amplitudes and the two presentation
rates. In the absence of perturbation, observers were
able to discern the direction of global-xy rotation
reliably, despite the fact that the only motion for each
disk was z-motion orthogonal to rotation direction.
Performance decreased monotonically with increasing
perturbation amplitude, but improved with increased
shape amplitude. This suggests that observers relied, at

Figure 4. Panels A, B, and C show the space-time diagrams for sample stimuli used in Experiment 2 under no-noise, medium-noise, and

large-noise conditions, respectively. Disparities are depicted using grayscale with zero disparity depicted by medium gray. The downward

oriented lines formed by discs with similar brightness (disparity) in Panels A and B show a clockwise rotation of the shape even when the

local motion of each disk is in the counterclockwise direction as shown by the upward tilt of each row. A lack of such downward oriented

lines in Panel C correspond to an absence of coherent shape rotation, even though local apparent motion signals are still present.

Figure 3. Panels A, B, and C show the space-time diagrams for sample stimuli used in Experiment 1 under no-noise, medium-noise, and

large-noise conditions, respectively. Disparities are depicted using grayscale with zero disparity depicted by medium gray. The downward

oriented lines in Panels A and B show a clear clockwise rotation while a lack of such oriented lines in Panel C correspond to an absence of

coherent shape rotation.
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least partly, on some form of shape matching or
rotation-template to achieve this task. Observers
performed better at slower presentation rates, which
is in agreement with previous findings for third-order
motion stimuli (Lu & Sperling, 1995), and consistent
with the fact that stereo-motion perception declines at

higher temporal frequencies. Alternately, the possibility
of a decline in stereo-shape extraction at faster
presentation rates (Foley & Tyler, 1976) cannot be
ruled out as a cause, although Tseng, Gobell, Lu, and
Sperling (2006) showed that observers are sometimes
unable to discriminate motion direction of stereo-
defined gratings, even when they clearly perceive the
grating. Performance declined for both grating and
motion detection at higher temporal frequencies. The
interaction between shape amplitude and perturbation
amplitude and perturbation amplitude and presenta-
tion rate is likely due to a ceiling effect at lower values
of perturbation amplitude. Finally, observers’ perfor-
mance on the monocular control task was at chance
level, suggesting that the task required extraction of
stereo-based depth information.

Experiment 2: Global versus local motion

There are two plausible strategies that observers
could have used to discern rotation direction in
Experiment 1. They could have extracted a 3-D shape
on each frame and compared shapes across frames to
determine the rotation direction, or they could have
determined the local-xy motion direction for each disk
and performed a pooling operation to determine object
rotation. In Experiment 2, the shape was rotated by
80% of the interspoke angle between presentations,
which resulted in the shortest/slowest local-xy motion
(Weiss et al., 2002) being in the direction opposite to

Figure 5. Average of 10 observers’ performances as a function of perturbation amplitude at slow and fast presentation rates in Experiment

1. Solid lines and dashed lines correspond to large and small shape amplitudes, respectively. The large diamonds show chance

performance on the monocular control task. The error bars depict the SEM. A three-way repeated measures ANOVA revealed significant

effects of perturbation amplitude, F(5, 45)¼214.33, p , , , 0.0001, shape amplitude, F(1, 9)¼24.11, p¼0.0008, and presentation rate,

F(1, 9)¼17.41, p¼0.0024. There was also a significant interaction between shape amplitude and perturbation amplitude, F(5, 45)¼6.04,

p¼ 0.0002, and perturbation amplitude and presentation rate, F(5, 45)¼ 7.48, p , , , 0.0001. Observers performed at chance for the

control tasks, both at slow speeds, t(9) ¼ 0.22, p ¼ 0.83, and t(9)¼ 2.28, p ¼ 0.05.

Movie 6. An example of the stimuli used in Experiment 2 under

large-noise condition and fast presentation rate.
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the global-xy shape rotation. This allowed us to
compare the role of global shape cues and local motion
signals in inferring object motion. Figure 6A and B
show that despite the presence of distracting local-xy
motions that were opposite to global-xy rotation,
results of Experiment 2 were similar to Experiment 1:
Observers’ performance declined monotonically with
perturbation amplitude, but improved with shape
amplitude and presentation rate. The main difference
was that at large values of perturbation amplitude,
when global shape changed drastically from frame to
frame, observers based rotation reports on the direction
of local motion, as shown by points lying reliably below
50%. These results show that observers weigh local
motion signals more for large dynamic shape deforma-
tions, and global signals shape cues more when the
shape-correlations are higher due to smaller deforma-
tions, suggesting that the cues are weighted propor-
tional to relative reliability.

Finally, on the control condition with binocular
viewing, observers perceived shape rotation in the
direction of the strongest local-xy motion for both slow
and fast presentation rates. Our experiment design is
validated by the fact that observers’ percept favored
local-xy motion direction in absence of stereo-defined
shape (control condition) but favored global-xy rota-
tion direction in presence of stereo-defined shape (main
experiment). It should be pointed out that while the
global shape cues were no longer reliable at large values
of perturbation amplitude, the local-xy motion was also
affected to some extent, and thus observers did not

perceive global rotation in the direction of local-xy
motion on 100% of the trials (Figure 6A, B).

Models

Efficiency of stereo-driven object motion
perception

To estimate observers’ efficiency, we compared their
performance on the 3-D global-xy rotation direction
discrimination task to that of an optimal Bayesian
decoder. The decoder was implemented by calculating
the plausibility ratio (MacKay, 2003) for clockwise and
counterclockwise rotations, i.e., the ratio of the
posterior probabilities for clockwise rotation, P(cw j
Ti), and counter-clockwise rotation, P(cc j Ti), for each
transition, Ti, between frames (Equation 1):

PðcwjTiÞ
PðccjTiÞ

¼

X

�hcw

PiðcwÞ:PGðTijhcwÞ
X

�hcc

PiðccÞ:PGðTijhccÞ
ð1Þ

In this and subsequent equations the superscripts G and
L correspond to global-xy and local-xy motion,
respectively. The prior probabilities, Pi(cw) and Pi(cc),
were set to 0.5 to correspond with the experiment
design. For any transition between two frames PG(Ti j
hk), the likelihood distribution of getting the two shapes
on the transition Ti, given each rotation angle hk, was

Figure 6. Average of 10 observers’ performances as a function of perturbation amplitude at slow and fast presentation rates in Experiment

2. Solid lines and dashed lines correspond to large and small shape amplitudes, respectively. The diamonds show the effects of local

motion when the global shape had zero amplitude. The error bars depict the SEM. A three-way repeated measures ANOVA revealed

significant effects of perturbation amplitude, F(5, 45) ¼ 78, p , , , 0.0001, shape amplitude, F(1, 9) ¼ 26.93, p ¼ 0.0006, and

presentation rate, F(1, 9) ¼ 18.76, p ¼ 0.0019. There was also a significant interaction between shape amplitude and perturbation

amplitude, F(5, 45)¼ 6.86, p¼ 0.0001. Observers performed significantly below chance on the control task for both slow, t(9)¼ 5.41, p¼
0.0006, and fast, t(9)¼ 5.03, p ¼ 0.001, presentation rates.
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computed based on the deviation from a perfect shape
matching dihk

, defined as the sum of squared differences
between the global shapes on two successive frames
rotated by hk (Equation 2):

PGðTG
i jhkÞ ¼

e
�dihk

X

�h

e�d
i
h

; hk�ð�p : p=6 : 5p=6Þ

ð2Þ
We assumed that judgments on each transition are
independent of other transitions; therefore, the plausi-
bility ratio for each trial was taken as the product of the
ratios calculated for all transitions during that trial.
The outcome of the trial was taken as clockwise if the
trial ratio was larger than 1.0 and as counterclockwise
otherwise. Finally, the total numbers of correct
direction decisions were tallied to get an accuracy
proportion over all trails belonging to each condition.
Figure 7A and B show the model’s performance as a
function of perturbation amplitude on the stimuli used
in Experiments 1 and 2.

In order to compare the observers’ mean perfor-
mance to the model’s, we used the magnitude of
perturbation amplitude at 75% accuracy as perfor-
mance efficiency. Higher efficiency implies that the
process can tolerate more shape deformation before the
performance drops to 75%. In order to vary the
efficiency of the model, we varied the number of disks
tracked, which can be considered to be the fraction of
total available information used. Figure 7C shows that
the efficiency of the model increases monotonically
with the number of disks tracked, i.e., as it utilizes a
larger fraction of the available information. The two
horizontal lines show mean observer efficiency for the
two presentation rates at the greater shape amplitude.

For the lower presentation rate, observers were 75% as
efficient as the Bayesian optimal decoder, showing that
the underlying neural processes are extremely efficient.
Observers are thus either optimally tracking nine disks
or suboptimally tracking a greater number of disks in
order to achieve a similar efficiency. Studies examining
multiple-object tracking typically have found that only
four objects can be tracked simultaneously (Intriligator
& Cavanagh, 2001; Pylyshyn & Storm, 1988), while
some other studies have shown the number of objects
that can be tracked is dependent on the motion speed
and can be as high as eight for very slow moving targets
(Alvarez & Franconeri, 2007). Thus, while nine appears
to be a large number for the moderate speeds used in
the current experiment, it must be pointed out that
multiple object tracking studies typically entail random
and independent motion for each of the elements,
which is not the case in the current study. Therefore, we
believe that the limitations on the number of elements
that can be tracked found in multiple object tracking
studies does not have a strong bearing on the current
finding. Further, it has been shown that for slow
speeds, objects are tracked as a group (Alvarez &
Franconeri, 2007).

Combination of global shape and local
motion cues

There are two main differences between the empir-
ical and simulated graphs, and the differences are
diagnostic. First, unlike the model’s performance,
observers’ performance was less than perfect even for
the no-deformation condition (Figure 5). Measurement
noise or internal noise in the system may be the cause.
Second, when local-xy motion was opposite to global-

Figure 7. (A) Performance of the optimal model as a function of perturbation amplitude on the stimuli used in Experiment 1 and (B)

Experiment 2. The solid and dashed lines correspond to the performance at large and small shape amplitudes, respectively. (C) Bars

depict perturbation amplitude at 75% accuracy for the optimal model using subsets of dots (equivalently percent of available information),

and lines show average perturbation amplitude at 75% accuracy for 10 observers at low (dotted) and high (dashed) presentation rates.

The error-bars depict the SEM.
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xy rotation in Experiment 2, observers’ performance
was reliably below chance for large deformations. This
suggests that observers also use local-xy motion
information to discern global-xy rotation direction as
the global shape cue becomes less reliable.

In order to account for the observed data, we added
three parameters to the Bayesian model. First, we
added a multiplicative noise term to account for the less
than perfect performance for the zero deformation
condition. This noise term reflects both sensory
measurement noise and internal neural noise. Second,
we modified the likelihood function to include both a
local-xy motion term and a global shape term. The
local likelihood function was calculated for each disk
for clockwise and counterclockwise motion in a similar
fashion as the global shape–correlation-based likeli-
hood function (Equation 3).

PLðTL
i jhkÞ ¼

e
�dihk

X

�h

e�d
i
h

; hk�ð�p=6; p=6Þ ð3Þ

The composite likelihood function was computed by
combining the global likelihood function weighted by
the correlation coefficient rh and a scaling parameter U,
which reflected the relative emphasis on local-xy
motion and global shape cues for each individual
observer (Equation 4). N is the total number of disks.

PLðTL
i þ TG

i jcwÞ

¼
X

�hcw

qhcw :PðT
G
i jhcwÞ þ

U
N
:
YN

n¼1
PðTL

i jhcwÞ ð4Þ

Third, we added a depth-scaling parameter to the

Figure 8. Squares and stars show mean observer performance for large and small shape amplitude, respectively. Curves depict means of

the fitted curves. The shaded areas represent 95% confidence intervals for the curves. The error bars depict SEM.
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model to simulate both a compressive interaction
between neighboring disparity targets (Westheimer,
1986; Westheimer & Levi, 1987) and relative weights
assigned to changes in depth versus changes in position
in the fronto-parallel plane for calculating apparent
motion for each stereogram. In summary, the model
was fit to the data with three parameters, measurement/
internal noise, depth scaling, and relative weights for
local-xy motion signals and global shape cues. Previous
studies have shown that disparity thresholds decrease
with increase in exposure duration (Foley & Tyler,
1976; Ogle & Weil, 1958; Shortess & Krauskopf, 1961).
Thus, in order to model the effect of presentation rates
we fitted the noise parameter while keeping the other
two parameters fixed.

Themodel fit well tomost observers’ data (14 out of 20
fits passed a chi-squared goodness-of-fit test at p . 0.05).
We then calculated the average and the 95% confidence
interval of the fits. Figure 8 compares the model’s fit to
the average of the 10 observers’ data. Themodel captures
the trends in the average data extremely well, accounting
for below chance performance for large deformations in
Experiment 2, and better performance at the larger shape
amplitude and slower presentation rate.

We can estimate internal noise in our model from the
direction discrimination versus perturbation amplitude
curves in a manner similar to the estimation using
threshold versus noise curves (Nagaraja, 1964; Pelli &
Farell, 1999). The knee of the curve occurs when
external noise is equal to internal noise. Figure 5 shows
that the absolute value of the external noise where the
knee occurs varies with the shape amplitude, suggesting
a multiplicative nature for the internal noise. The noise
estimates yielded by the model (0.29 and 0.49, for small
and large shape amplitudes, respectively) correspond
well to the values at the knees. The parameter for the
relative weights of local motion and global shape varied
considerably between observers with values ranging
from 0.18, where the observer relied primarily on global
shape-based cues, to 1.25, where the observer relied
more on local-xy motion signals (a value of 1 implies
equal weights). Since there was a constant reference
frame present throughout the trial duration, observers
could have extracted relative depth for each disk fairly
accurately after allowing for some lateral compressive
interactions (Westheimer, 1986; Westheimer & Levi,
1987). Therefore, the depth-scaling parameter primarily
refers to the weights given to changes in depth versus
changes in x-y position. The mean value for the
parameter was 0.045, implying that observers primarily
relied on lateral separation for computing local-xy
motion rather than on separation in depth, which is in
agreement with the previous findings on perception of
apparent motion in 3-D space (Erkelens & Collewijn,
1985; Green & Odom, 1986; Prins & Juola, 2001).

General discussion

The early history of studying the connections
between stereo and motion had a number of distin-
guished contributors, but many of the attempts used
stimuli in which it was difficult to discern stereo-driven
motion (Wade, 2012). The invention of dynamic
random-dot stereograms (Julesz, 1971) made it possi-
ble to study the phenomena systematically (Chang,
1990; Erkelens & Collewijn, 1985; Patterson, 1999). By
using sinusoidal depth corrugations without texture or
luminance cues, Lu and Sperling (2002) and Patterson
(1999) showed that humans can extract translation
directions of motions defined solely by dynamic
changes in disparity. Our conditions are different from
the depth corrugations because the disparity islands are
separated by space and perturbed with disparity noise.
Ito (1997, 1999) used a random dot display divided into
squares, and either one sixteenth or one half of the
squares was differentiated as a figure by disparity cues.
In an apparent motion paradigm, observers perceived
lateral motion over motion-in-depth in both cases, but
only in the one-sixteenth case was there evidence of
using global shape. Unlike in the one-sixteenth case,
the disparity-defined shape in our stimuli does not shift
laterally to a new location; instead, only the disparity
in each disk is changed so that there are two possible
xy-motion outcomes on each trial. These stimuli enable
us to go beyond previous work to study how local
stereo-motion signals are combined with stereo-defined
shape cues to infer global motion of a deforming
object.

Once disparity is extracted, it is possible to build
direction-selective models that use this information
(Patterson, 1999), similar to models of extracting
motion energy from luminance contrast through
temporal delays and correlations (Adelson & Bergen,
1985; van Santen & Sperling, 1984; Watson &
Ahumada, 1985). However, there is evidence that a
general feature-tracking mechanism computes motion
from a saliency map contributed to by many properties
such as disparity, shape, etc. (Lu & Sperling, 2002).
While these mechanisms provide explanations for
various phenomena associated with stereomotion per
se, they do not explain how local stereomotions signals
may be integrated into coherent object motion for a
general case of deforming objects. Ito (1999) proposed
two parallel processes for computing stereomotion:
first, a process that extracts shapes and edges from
disparity and matches them across frames, and second,
a more local process that matches disparity values to
the nearest region with a similar disparity value. While
the local motion signals and global shape-based
components of our model were not designed to
correspond to these processes, they do share some
properties. Thus, in some ways, our model compares
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the relative contribution of the two processes, and the
fitted parameters show that most observers (9 out of
10) predominantly relied on global shape-based cues to
extract global motion.

We showed that observers are 75% as efficient as an
optimal Bayesian decoder when discerning rotation
direction of a dynamically deforming object defined
purely by stereo cues. This high efficiency contrasts
with the low efficiencies for perceiving point-light
biological motion (Gold, Tadin, Cook, & Blake,
2008) and band-pass filtered faces (Gold, Bennett, &
Sekuler, 1999), which are 0.4%–2.5% and 0.5%–1.5%,
respectively. Even simple motion-direction tasks for
dynamic random-dot stimuli yield efficiencies of only
35% (Watamaniuk, 1993). Further studies examining
stereoscopic depth perception using random-dot ste-
reograms have found human efficiency ranging from
20% to about 1%, depending on stimulus dot density
(Cormack, Landers, & Ramakrishnan, 1997; Harris &
Parker, 1992; Wallace & Mamassian, 2004). However,
human observers are extremely good at matching
shapes under rotational transformations, especially
for small angles of rotation that were used in the
current study (Graf, 2006; Lawson & Jolicoeur, 1998;
Marr, 1995). While the neural mechanisms involved in
extracting motion of deforming objects are not clear,
our modeling approach suggests a plausible mechanism
that takes advantage of high efficiency of the visual
system to compare shapes across rotational transfor-
mations.

The efficiency for 3-D shapes is lower than for two-
dimensional (2-D) deforming objects made of orthog-
onal local motions (Cohen et al., 2010). For 2-D
objects, observers were 90% as efficient as an optimal
Bayesian decoder and even outperformed the decoder
when the shapes were symmetric. This difference can
partly be attributed to the higher sensitivity to 2-D
displacements than to 3-D disparity-defined position
changes (Erkelens & Collewijn, 1985; Prins & Juola,
2001). Moreover, the shapes deformed randomly in our
stimuli, whereas in most natural cases, the deforma-
tions are fairly systematic and smooth, which could
allow the visual system to take advantage of continuity
and improve performance.

The stimuli used in current experiments consisted of
uniformly sampled disparity-defined 3-D shapes. While
this design allowed us to isolate, examine, and quantify
the role of disparity cues in extracting global motion of
deforming objects, it represents an oversimplified
version of real world objects. Indeed, most occluded
objects are not sampled uniformly nor do the visible
patches occur at the same eccentricity throughout the
visual field. In such cases, it is possible that information
from the fovea region is weighted more than informa-
tion in periphery due to a decline in stereo-acuity with
eccentricity (Cumming & DeAngelis, 2001; Parker,

2007; Wardle, Bex, Cass, & Alais, 2012). Further, 2-D
shapes formed by visible patches can be used to extract
motion as well and Cohen et al. (2010) showed that
humans are not only extremely efficient at using 2-D
shapes, but can also use abstract properties such as
symmetry to extract object motion.

It is well known that local motion direction is
affected by global context, and various mechanisms
have been suggested, ranging from simple combination
rules (Movshon, Adelson, Gizzi, & Newsome, 1985;
Weiss et al., 2002) for translation motion to regular-
ization principles for more complex motions (Hildreth,
1984; Ullman, 1979). The dynamic and random
distortions used in our stimuli enabled us to explore
the role of global form in integrating local motion
signals. Our results cannot be explained by theories
that consider only local motion interactions (Hildreth,
1984; Ullman, 1979), since performance drops drasti-
cally when sections of the stimuli are occluded, even
though local motion interactions remain intact for the
visible sections. Instead, our findings that observers can
extract global motions of deforming 3-D objects when
strongest local motions are in the orthogonal (z
motion) or even opposite direction (local-xy motion)
to the global shape rotation add to the literature on
interactions between the ‘‘form’’ and ‘‘motion’’ streams
of neural processing (Nishida, 2011). Electrophysiology
and functional magnetic resonance imaging (fMRI)
have shown that Glass (1969) patterns activate motion
areas, MT/MST, in a manner similar to motion cues
(Krekelberg, Dannenberg, Hoffmann, Bremmer, &
Ross, 2003), and point-light simulations of biological
motion activate both dorsal and ventral streams
(Grossman et al., 2000; Peuskens, Vanrie, Verfaillie,
& Orban, 2005). Studies examining interactions be-
tween form and motion streams have provided evidence
for both late (Rao, Rainer, & Miller, 1997) and early
interactions (Lorenceau & Alais, 2001). Our results
provide further evidence for late interactions given that
motion was invisible when viewed monocularly, i.e.,
observers had to extract the disparity-defined shape in
order to see it rotate.

It is worth considering possible neural substrates for
our perceptual results. fMRI measurements have
shown that visual area V3A is sensitive to stereoscopic
stimuli (Backus, Fleet, Parker, & Heeger, 2001) and to
feature tracking (Caplovitz & Tse, 2007b). It remains to
be seen whether some neurons contribute to both, or
whether the combination is in V3B/kinetic occipital
area (Ban et al., 2012). Moreover neurons in MT and
MST respond to disparity and motion (Roy et al.,
1992). Global motion is probably processed in MSTd
(Duffy & Wurtz, 1991) and not MT (Hedges et al.,
2011), but it remains to be tested whether these neurons
could be driven by stereo-driven motion.
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